Publications

  • J. Wurst, A. Flores Fernández, M. Botsch and W. Utschick, "An Entropy Based Outlier Score and its Application to Novelty Detection for Road Infrastructure Images", IEEE Intelligent Vehicles Symposium, Las Vegas, 2020.
  • A. Chaulwar, M. Botsch, and W. Utschick, “Efficient Hybrid Machine Learning Algorithm for Trajectory Planning in Critical Traffic-Scenarios”, International Conference on Intelligent Transportation Engineering, Singapore, September 2019.
  • O. Gallitz, O. d. Candido, M. Botsch, and W. Utschick, “Interpretable Feature Generation using Deep Neural Networks and its Application to Lane Change Detection”, IEEE International Conference on Intelligent Transportation Systems, New Zealand, October 2019.
  • M. Müller, X. Long, M. Botsch, D. Böhmländer, and W. Utschick „Real-Time Crash Severity Estimation with Machine Learning and 2D Mass-Spring-Damper Model”, IEEE International Conference on Intelligent Transportation Systems, 2018.

  • M. Müller, M. Botsch, D. Böhmländer, W. Utschick, „A Simulation Framework for Vehicle Safety Testing / Ein Simulationsframework für die Absicherung von Fahrzeugsicherheitsfunktionen“, Fachbuch/Tagung "Aktive Sicherheit und Automatisiertes Fahren", expert Verlag, pp. 135-155, ISBN: 978-3-8169-3405-9, 2017. 

  • M. Müller, M. Botsch, D. Böhmländer, W. Utschick, "Machine Learning Based Prediction of Crash Severity Distributions for Mitigation Strategies", Journal of Advances in Information Technology, Vol. 9, No. 1, pp. 15-24, February 2018. doi: 10.12720/jait.9.1.15-24. 

  • P. Nadarajan, M. Botsch, and S. Sardina, "Machine Learning Architectures for the Estimation of Predicted Occupancy Grids in Road Traffic", Journal of Advances in Information Technology, Vol. 9, No. 1, pp. 1-9, February 2018. doi: 10.12720/jait.9.1.1-9.

  • A. Chaulwar, M. Botsch, and W. Utschick, “Generation of Reference Trajectories for Safe Trajectory Planning”, International Conference on Artificial Neural Networks, 2018.

  • G. Notomista, M. Botsch, "A Machine Learning Approach for the Segmentation of Driving Maneuvers and its Application in Autonomous Parking", Journal of Artificial Intelligence and Soft Computing Research, Volume 7, Issue 4, pp. 243-255, 2017.
  • A. Chaulwar, M. Botsch, W. Utschick, “A Machine Learning based Biased-Sampling Approach for Planning Safe Trajectories in Complex, Dynamic Traffic-Scenarios”, IEEE Intelligent Vehicles Symposium, 2017.
  • P. Nadarajan, M. Botsch, S. Sardina, “Predicted-Occupancy Grids for Vehicle Safety Applications based on Auotencoders and the Random Forest Algorithm”, International Joint Conference on Neural Networks, 2017.
  • A. Chaulwar, M. Botsch, W. Utschick, “A Hybrid Machine Learning Approach for Planning Safe Trajectories in Complex Traffic-Scenarios”, IEEE International Conference on Machine Learning and Applications, 2016.
  • M. Müller, P. Nadarajan, M. Botsch, W. Utschick, D. Böhmländer, S. Katzenbogen, “A Statistical Learning Approach for Estimating the Reliability of Crash Severity Predictions”, IEEE Intelligent Transportation Systems Society Conference, 2016.
  • G. Notomista, A. Kammenhuber, P. Nadarajan, M. Botsch, M. Selvaggio, “Relative Motion Estimation Based on Sensor Eigenfusion Using a Stereoscopic Vision System and Adaptive Statistical Filtering”, International Symposium on Robotics, 2016.
  • P. Nadarajan; M. Botsch, “Probability Estimation for Predicted-Occupancy Grids in Vehicle Safety Applications Based on Machine Learning”, IEEE Intelligent Vehicles Symposium, 2016.
  • Chaulwar, M. Botsch, T. Krueger und T. Miehling, “Planning of safe trajectories in dynamic multi-object traffic-scenarios”, Journal of Traffic and Logistics Engineering, Vol.4, no.2, 2016.
  • G. Notomista und M. Botsch, "Maneuver Segmentation for Autonomous Parking Based on Ensemble Learning", International Joint Conference on Neural Networks, 2015.