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Abstract—Robotic repair tasks in automotive production, such
as spot repair, require heavy physical labor and knowledge about
tools and products in order to make informed decisions about
the repair strategy. As of now, they typically involve several
manual steps even though automation pipelines exist that guide
robotic repair using computer vision. Fully automating them
requires sensible decision-making based on past data and future
expected consequences in terms of costs. We propose to apply
machine learning techniques to this problem, show promising first
results and discuss challenges for learning systems in this and
related manufacturing processes. Using data-centric as opposed
to model-centric AI techniques, we were able to improve the
overall accuracy by about 6% and using cost-sensitive learning,
we were able to better guide model selection towards models
that – at the same level in terms of accuracy and F1-score – shift
unavoidable misclassifications to less severe outcomes (e.g. falsely
treating repairable defects as irreparable).

Index Terms—data-centric AI, machine learning, manufactur-
ing, quality inspection, paint repair

I. INTRODUCTION

Spot repair deals with the repair of paint defects in automo-
tive production. Robotic paint repair is a complex – and still
partially manual – task in car manufacturing. The automation
of such repair robots presents some major challenges: Not
only does the robot arm need to be flexible and application-
specific. It also has to detect and locate defects, and then
select and execute an appropriate repair program. Automated
solutions using machine vision techniques have already been
implemented and are in use for defect detection [1], [2].
However, the assessment of the defect and the subsequent
selection and implementation of an appropriate repair strategy
is often still a manual process. After the automated inspection
and detection of defects, they are marked by robots and
sent to human workers for repair. This can be very time-
consuming and costly, as well as requiring hard physical
labor. For this reason, significant time and cost savings can
be achieved by automating the entire process chain, including
defect identification from cameras using camera vision, feature
extraction, repair strategy selection, and finally automated
robot programming including planning.

In this paper, we will focus on the selection and implemen-
tation of a suitable repair program for an individual defect.
Although rule-based techniques, like removal simulations [3]
based on 3D-scans of the geometry of the defect located in the

CAD model, are theoretically possible, they are limited in this
context due to the unique size and shape of each individual
defect. It is not feasible to define a universal rule nor cost-
effective to derive an exact simulation for processing each
specific defect and application scenario optimally.

Instead, we present an alternative approach that uses
machine learning (ML) to select a suitable repair strategy
based on data from previous defect detection and repair
steps (see Figure 1). In addition, this approach promises a
higher quality and reliability of the selected repair strategies
due to its systematic nature, since human decisions are by
comparison usually highly subjective. Moreover, it offers
the possibility of flexible and, above all, rapid adaptation
to changing conditions (e.g. new tools or additional repair
programs) or to changing needs of the end user such as, e.g.,
faster processing times at the possible expense of some wrong
repair decisions. Finally, it promises a less time-consuming
repair process due to automation, allowing companies to
handle a greater number of orders.

Consequently, this paper addresses the following research
questions:

• RQ1: How well can the data and information of the
optical inspection for defect detection in automotive spot-
repair be used to automate the selection of the best-suited
repair strategy using machine learning?

• RQ2: How can expert knowledge be used to improve data
quality and therefore model performance?

• RQ3: How do we know whether the data or the choice
of models and hyperparameters is the problem, if desired
results cannot be reached?

• RQ4: How can the best-suited model (in terms of end
users’ overall application goals) be found and selected?

• RQ5: Can a model-based decision provide an advantage
in terms of reliability and cost compared to a human
decision (which is often based on subjective judgment)?

Our initial hypothesis is that a machine learning model
shall be able to predict the desired repair strategy with about
95% accuracy since the use case and data is supposedly easy
and manageable compared to other use cases. Moreover, it
is routinely solved manually in today’s paint shops. Besides



Fig. 1. The core overall approach: A computer vision system feeds in derived features x of a located defect into a machine learning model which learns
p(y | x; θ) by adjusting parameters θ. The most likely repair strategy ŷ is included in the planning and automatic generation of the robot program.

finding the right repair strategy, one main goal was to isolate
defects that cannot be treated at all using the existing repair
strategies. The aim of identifying defects that cannot be treated
by current repair programs is to prevent wasting resources on
unfixable defects, while also ensuring repairable defects are
not overlooked or neglected.

In the following,
• We will thus present an ML-based solution and proof of

concept for automated spot repair.
• We further show how data-centric methods like the inclu-

sion of expert knowledge for label quality improvement
and feature engineering can be used to improve model
performance.

• Finally we present proof that optimizing the model per-
formance by common metrics such as accuracy or F1-
score does not necessarily meet the main goals of the
end user and show a way to find the most appropriate
model for a given use case.

II. RELATED WORK

A. Automation in paint (repair) processes

There are several approaches that already integrate machine
learning into offline (reactive) robot programming, focusing on
similarity-based robot program selection and motion planning
support for painting tasks [4], [5]. The decision function for
a repair strategy based on a detected defect has not been
addressed so far. By contrast, [6] investigates ML approaches
based on point clouds that propose ideal robot motion plans
and paths for different part geometries. Selecting the repair
strategy itself is again not part of the work.

B. Data-centric Machine Learning

The focus in machine learning and artificial intelligence
is gradually shifting towards data-centric approaches. Data-
centric machine learning, as opposed to model-centric machine
learning, refers to improving the performance of models by
increasing the quality of the data. The latter focuses on
improving performance by optimising hyperparameters or by
using different (larger) models and making progress by im-
proving/ changing model designs [7]. By this, models should
be developed and good enough to deal with possible noise in
the data

The concept of data-centric machine learning involves
ensuring good data quality in all parts of the machine

learning process. This includes the collection and preparation
of training, validation and test data, as well as the subsequent
maintenance and assurance of data quality in industrial use.
Individual steps include the creation and recording of correct
labels for training and testing, feature engineering to increase
the information content, or data augmentation methods.
Human involvement and participation is, among other things,
seen as a crucial factor [7], [8]. Hamid describes data-centric
machine learning as a twin driver for compact and robust
solutions, with a particular focus on Industry 4.0 [9].

There are several approaches that already prove and show
the influence of changes in data-quality on the performance of
a model [10], [11]. But all of them test different approaches
using different publicly available datasets.

To the best of our knowledge, there is currently no approach
that tests and uses data-centric methods to develop a model
suitable to be used in industrial practice. Especially not for a
manufacturing use case.

C. Cost-sensitive learning

Regarding (supervised) classification tasks, varying mis-
classifications often result in different costs. Those costs can
be included in the decision-making process. The concept of
incorporating various costs for diverse misclassifications is not
novel and is commonly referred to as cost-sensitive learning
in the literature. The main idea is to modify the learning
process of a model by applying a cost matrix on errors that
can be translated into a proper loss function to optimize [12].
This means the costs (if they are known) can already be
included at the training algorithm level [13]. As outlined
in [12], a cost matrix must be established beforehand and
subsequently used for optimizing the model with consideration
for costs. Since the costs of different misclassifications are
mostly unknown some authors think that this is the reason
that this method is not yet widely used [13]. Ideas from
optimization might further help to derive numerical costs from
qualitative preferences [14].

[15] and [16] already use cost matrices for model optimiza-
tion in a manufacturing context. In addition, many authors,
also in manufacturing, refer to cost-sensitive learning when
they actually mean reweighting, i.e., increasing the weight
of minority and decreasing the weight of majority classes in
unbalanced data sets [13], [17]–[20].



In the following, we will use the above-mentioned cost
matrix for a goal- and cost-oriented model selection. The cost
matrix will not be integrated into the algorithm.

III. PROBLEM SETTING, DATA AND APPROACH

We first describe the available data and use case, followed
by a discussion about the ML engineering steps.

A. Use case and data structure

The ML problem itself is a multiclass classification problem
for fault detection and analysis, i.e., given d features X ⊆ Rd

and targets y on a supervised dataset D = (X, y), find an
approximation f̂ : X 7→ y using empirical risk minimization
on the training set. Alternatively, the problem can be viewed
probabilistically in the face of several sources of uncertainty
(e.g., label uncertainty and subjectivity, inherent process un-
certainty of the sanding/grinding involved) such that for any
instance x, we learn a discriminative model p(y | x). The
goal is to find the right level of intensity to repair defects
that resulted from the previous manufacturing step. The initial
situation and data structure can be described as follows:

• The targets y consist of 3 classes. Two of those classes
(level A and level B) represent two different intensities
and strategies for defect repair. In the course of this, level
A refers to a “weaker” treatment that takes less time
but might not be sufficient for larger defects and level B
referring to a “stronger” treatment that reliably resolves
most faults at the expense of i) possible material damage
and ii) a longer processing time and, thus, costs. The 3rd
class, level C, marks all instances with defects that are too
severe to be repaired with the existing repair measures.
It’s important to note that the values for y themselves
stem from an imperfect estimation process – levels 3 to
4 would be technically possible but were not part of the
data set.

• The features X initially consist of 4 numerical and 2 cat-
egorical ones – describing the dimensions and qualitative
properties of the faults. These features are derived from
an image that itself is not available to us anymore. The
latter result from a previous automated optical inspection
which is used to detect and mark individual defects.

• The choice of including expert knowledge during feature
engineering resulted in two different data sets, as further
described in Section IV-A. The number of data points in
the first dataset DI is slightly above 3000. The second
dataset DII consists of roughly 2500 data points and
includes one more numerical feature as a result of the
aforementioned discussions.

• In general, the available data was highly imbalanced with
on average 82% level A, 16% level B, and 2% level C
data points before in the raw data of DI – but this reflects
the actually occurring repair strategies.

B. Methodology

As further described in the following sections, we carried
out four different experiments. Based on them, we were able

to gradually improve our models by sequentially increasing
the quality of the data and the amount of information within
the data.

We used different algorithms to train and compare the mod-
els, reaching from decision tree and random forest classifiers
from scikit-learn over gradient boosted trees (XGBoost) up
to a small feed-forward neural network in Keras/TensorFlow.
Since the random forest (RF) and gradient-boosted trees
(XGB) consistently showed the best results, in the remainder
of this paper, especially the following result section, only
those model performances are presented in further detail. To
ensure better comparability of algorithms and models, the
same models with the same hyperparameters were trained for
each experiment. For this purpose, the following combinations
were chosen:

a) ’RandomForestClassifier’:
’min samples split’ = 2, ’max leaf nodes’ = None

b) ’RandomForestClassifier’:
’min samples split’ = 10, ’max leaf nodes’ = 10

c) ’XGBClassifier’:
’learning rate’ = 0,05, ’n estimators’ = 100,
’max depth’ = 10

d) ’XGBClassifier’:
’learning rate’ = 0,1, ’n estimators’ = 42,
’max depth’ = 21

In the following they will only be referred to as model a) to
model d). All presented results were derived on a validation
set consisting of 30% of each dataset.

IV. INCLUSION OF EXPERT KNOWLEDGE FOR DATA
QUALITY IMPROVEMENT

A. Using expert feedback to increase label quality

Our initial classification results are shown in Table I and
referred to as Experiment 1 (E.1). Here, it can be seen that
the results are already quite good (considering accuracy),
even if they are still below our first target or the expectation
of about 95%. However, as mentioned in the introduction,
there is another objective to be considered here. The focus
should be on non-repairable defects, both to avoid trying to
fix them (false negatives) and to avoid eliminating repairable
defects (false positives). Looking only at the results for
class C, it is clear that this objective cannot be achieved.
The maximum F1-score obtained with model c) is 14.29%.
Models a) and b) don’t even recognize a single class C defect.
Since this specific problem can be treated as binary also –
separating into “repairable” and “irreparable” – we conducted
those experiments as well. This resulted in similar model
performances, which is why this approach was not pursued
any further.

As noted by [7], the subjectivity of labels is often a major
challenge when it comes to good data quality. That is why,
based on the selected repair strategies, feedback was sought
from experts on the extent to which the selected program in y,
was suitable for repairing the defect. It describes – in plain text



– if the chosen intensity was deemed good for the respective
fault or if a higher intensity, i.e., still more repair work, is
needed, or if the fault is not repairable at all. Determining if
a weaker treatment would have sufficed is impossible upon
seeing the repaired part and thus not part of the dataset.

The process experts’ feedback on y, after execution, leads
to adjustments on the labels based on different rules R.

R = {(φi ⇒ Ai) | i ∈ I}
where I is the index set of the rules, and (φi ⇒ Ai) is the i-th
rule. If the precondition φi holds for instance xj the action
Ai is applied on label yj , leading to an adjusted label yadjj .

TABLE I
CLASSIFICATION RESULTS WITH DATASET DI . IN E.1, WITHOUT LABEL

ADJUSTMENTS, IN E.2 WITH RULE SET R2

E Model Class Accuracy Precision Recall F1-Score
A – 97,01% 98,03% 97,52%

a) B – 78,95% 81,82% 80,36%
(RF) C – 0,00% 0,00% 0,00%

mean 93,59% 58,65% 59,95% 59,29%
A – 96,36% 98,49% 97,42%

b) B – 81,32% 81,82% 81,57%
(RF) C – 0,00% 0,00% 0,00%

mean 93,98% 59,23% 60,10% 59,66%
1 A – 97,34% 97,91% 97,63%

c) B – 79,65% 83,03% 81,31%
(XGB) C – 25,00% 10,00% 14,29%

mean 93,88% 67,33% 63,65% 64,41%
A – 97,13% 98,37% 97,75%

d) B – 81,70% 81,21% 81,46%
(XGB) C – 20,00% 10,00% 13,33%

mean 93,98% 66,28% 63,20% 64,18%
A – 90,72% 97,42% 93,95%

a) B – 57,41% 45,93% 51,03%
(RF) C – 63,07% 41,84% 50,31%

mean 85,56% 70,40% 61,73% 65,10%
A – 89,60% 98,52% 93,85%

b) B – 62,38% 46,67% 53,39%
(RF) C – 87,43% 40,82% 53,69%

mean 86,42% 76,81% 62,00% 66,98%
2 A – 91,00% 96,93% 93,87%

c) B – 55,65% 47,41% 51,20%
(XGB) C – 71,45% 44,90% 53,99%

mean 85,66% 84,25% 63,08% 66,35%
A – 90,96% 96,56% 93,68%

d) B – 53,98% 45,19% 49,19%
(XGB) C – 61,43% 43,88% 51,19%

mean 84,99% 68,79% 61,87% 64,69%

While we could simply perform these adjustments as a
fixed preprocessing step, we formalize them explicitly for
two reasons: First, in such a manufacturing case, we would
keep adapting the labels of past instances based on the results
process experts actually observe after the predictions have
been applied – and thus the data quality is improved for future
versions of the models. Second, in different plants different
forms of feedback may be used; those adjustment rules have
to be kept adaptable.

In the course of our machine learning process, we observed
two distinct rule sets which were subject to experimentation,
further described as Rule 1 (R1) and Rule 2 (R2).

Whenever the feedback states that the chosen intensity was
“too low”, the level of intensity is increased by one. Whenever

the feedback says the defect cannot be repaired, the level is set
to C and therefore to “irreparable”. An explicit “ok” confirms
the label, i.e., yadj = y.

R1 = {("too low" ∈ feedback ⇒ λy.y + 1),

("irreparable" ∈ feedback ⇒ λy.C),

("ok" ∈ feedback ⇒ λy.y)}

By those rules, every data point with intensity level B that
was rated as too low, receives an intensity level of C. There is
the possibility to add an intensity level B2 to the classification
and to the corresponding manufacturing process. However, all
of these cases are “synthetical“ level B2 cases as this repair
program has never been actually performed and evaluated in
DI and DII . Moreover, this leads to an even greater imbalance
due to a small number of these cases. Therefore we have not
pursued this approach any further.

Instead, a second set of rules was devised. By this set of
rules, all data points j with yj = B that were rated as too
low, are converted to level C. Intuitively, if level B is still too
low to achieve the desired results, the respective part will be
discarded.

R2 = {("too low" ∈ feedback ⇒

{
λy.(y = A) → B

λy.(y > A) → C
,

("irreparable" ∈ feedback ⇒ λy.C),

("ok" ∈ feedback ⇒ λy.y)}

This means the two experiments shown in Table I can be
summarized as follows:
E.1 classification with the initial dataset DI

E.2 classification with labels adjusted by expert feedback
based on rule set R2 in dataset DI

Comparing the results of both experiments directly shows
that the accuracy decreased. However, the results of E.1 are
somewhat deceiving because the model only reproduced the
repair strategy choices before they have actually been validated
– therefore training and validation took place on slightly
incorrect labels. Moreover, having a closer look on the other
metrics shows, that the average precision, recall and F1-score
increased for nearly every model. Especially the results for
the class C become significantly better due to the fact that
now 98 instances fall into class C instead of the previous
20 (cf. Figure 2). A larger part of the irreparable defects
can be detected and also the prediction certainty of the class
C increases. This can be seen above all in the following
confusion matrices, depicted in Figure 2, giving a baseline
for RQ1.

As can also be seen, this only works at the expense of being
able to classify level B defects correctly. But since we were
able to make a huge progress in detecting irreparable defects
here, we want to continue with the adjusted labels for the
following experiments.

B. Nearest neighbor analysis to prove data uncertainties

The results of E.2 shown in Table I are not as good in
terms of accuracy as hoped for and could not be improved
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Fig. 2. Confusion Matrix results of experiment 1 and 2 – DI without and
with adjusted labels by expert feedback

TABLE II
NEAREST NEIGHBOUR ANALYSIS RESULTS

Feature 1 Feature 2 Feature 3 Feature 4 Label
Query 10,65 0,71 0,000739 0,008334 C

NN 10,68 0,71 0,000969 0,008226 A
Index Feature 1 Feature 2 Feature 3 Feature 4 Label
Query 22,69 1,76 0,003618 0,01227 B

NN 22,43 1,79 0,002389 0,01268 A
Index Feature 1 Feature 2 Feature 3 Feature 4 Label
Query 3,97 0,47 0,000443 0,001676 B

NN 3,95 0,46 0,000278 0,003970 A

using hyperparameter optimization. We, therefore, took a data-
centric perspective and decided to take a closer look at the
individual data points, especially their nearest neighbors (NN).

As can be seen in Table II, using three (slightly cherry-
picked) different examples, there are cases where two data
points look very similar but do not have the same label.
The underlying distribution p(y | x), thus, shows fairly high
(aleatoric) data uncertainty – for some values of x, there is no
single true answer y. At this point, we assume that the labels
used are largely correct. This assumption is valid because
the human decisions used as labels so far have already been
reviewed and adjusted based on the recorded expert feedback
(However, this assumption is challenged in future work as
label errors might also be an explanation of varying labels
for similar instances, such as those in Table III.) This leads
us to conclude that the (few) features available to us may not
yet capture all the information necessary to make a reliable
decision, i.e., they are simply not predictive enough.

C. Using expert knowledge for feature engineering

Based on the results of the previous section and further
discussions, process experts recommended removing one of
the categorical features, which according to them should not
influence the decision. To avoid possible bias, we removed this
feature. This in turn confirmed that assumption as the results
did not change in any way.

Furthermore, the process experts recommended one
more numerical feature which may contain other, required

information. Since it was not possible to obtain those feature
values a posteriori to our dataset DI, the second dataset
DII was collected. Except for this fifth additional numerical
feature and the removed categorical feature, nothing changed
in the structure of the data. The results of adding this feature
are shown as experiment E.3 in Table III. Since our previous
experiments showed better results when using the collected
expert feedback for label adjustment, all results from DII

are based on previously adjusted labels with the rule set
R2. Compared to the previous experiments E.2, we see an
improvement of around 3% in accuracy and up to 6,9% in
F1-score (model a)), which answers RQ2.

One can argue that it is not the same dataset and the increase
of performance results is by chance. Therefore experiment
E.4 shows the results of dataset DII without using the rec-
ommended additional numerical feature. The used data for
training and validation as well as the models’ hyperparameters
are all identical. It can be seen that in this comparison, every
model being trained with the additional feature shows better
results than without – clear evidence for RQ3 that feature
engineering paid off more than tuning hyperparameters in this
case, corroborating the data-centric stance.

TABLE III
CLASSIFICATION RESULTS WITH DII (SIMILAR DATASET LIKE D1 BUT

WITH 5TH NUMERICAL FEATURE) IN E.3 AND AS A CONTROL
EXPERIMENT WITHOUT THAT FEATURE IN E.4

E Model Class Accuracy Precision Recall F1-Score
A – 93,40% 98,11% 95,70%

a) B – 67,00% 62,04% 64,42%
(RB) C – 73,68% 45,16% 56,00%

mean 89,19% 78,03% 68,44% 72,04%
A – 91,65% 98,58% 94,99%

b) B – 64,29% 58,33% 61,17%
(RB) C – 91,67% 35,48% 51,16%

mean 88,32% 83,54% 64,13% 69,11%
3 A – 93,51% 97,64% 95,53%

c) B – 64,42% 62,04% 63,21%
(XGB) C – 68,42% 41,94% 52,00%

mean 88,57% 75,45% 67,20% 70,25%
A – 93,23% 97,64% 95,38%

d) B – 63,73% 60,19% 61,90%
(XGB) C – 68,42% 41,94% 52,00%

mean 88,32% 75,13% 66,59% 69,76%
A – 91,98% 97,48% 94,65%

a) B – 60,64% 52,78% 56,44%
(RF) C – 73,68% 45,16% 56,00%

mean 87,45% 75,43% 65,14% 69,03%
A – 90,36% 98,90% 94,44%

b) B – 62,07% 50,00% 55,38%
(RF) C – 86,96% 32,26% 47,06%

mean 87,21% 79,80% 60,39% 65,36%
4 A – 92,32% 96,54% 94,38%

c) B – 59,22% 56,48% 57,82%
(XGB) C – 68,42% 41,94% 52,00%

mean 86,96% 73,32% 64,98% 68,07%
A – 92,16% 96,22% 94,14%

d) B – 57,84% 54,63% 56,19%
(XGB) C – 67,50% 43,55% 52,94%

mean 86,58% 72,50% 64,80% 67,76%



V. GOAL-ORIENTED AND COST-SENSITIVE MODEL
SELECTION

A. Goals for model selection

For the model selection in the specific case study (further
described in section III-A), we need to have additional facts
in mind. Process experts state that it is of great importance to
avoid misclassifications of the irreparable (level C) parts. The
consequence of classifying an irreparable part as repairable
(false negatives) is that there will be the costs of the chosen
repair strategy and the resource costs because the part still
needs to be disposed of afterwards. Conversely, classifying
a repairable part as irreparable (false positives) means
that resources will be wasted. When in doubt, it is more
important for the company to prevent false positives. This has
already been shown and observed in previous experiments
(experiments 1 and 2).

Considering only the repairable parts, suggesting a level B
repair is likely producing a sufficient quality for most cases,
even those where a level A treatment would have been enough.
But they would be fed back as OK and thus labeled as level
B cases for future training sets. Therefore, classifiers need to
be incentivized to choose level A in addition to the labels.
Potentially we can learn more from choosing level A than
level B, which leads to an interesting exploration//exploitation
tradeoff. Also, level B is more expensive than level A.

On the other hand, choosing level A first and reworking
again (with another round of level A or even level B) will
be more expensive than the direct choice of level B. For the
company, it is of greater importance to avoid choosing level
B if that is not necessary. Level B should only be chosen if it
is relatively certain that this intensity is really needed to cure
the given defect.

When looking at the performance results from experiment
E.3 in Table III, it can be seen that they are very close to
each other in terms of both accuracy and F1-score. Model
a) “wins” in both metrics, albeit by a small margin and all
models are quantitatively similar. However, when looking at
the resulting confusion matrices (Figure 3), it can be seen that
there is a big qualitative difference in where the corresponding
model errs. For example, model b) exhibits a notably lower
error rate in class C (only two false positives) compared to
the other models. Therefore the question is which model is
the best choice for this use case. In the following, we want
to include goals and costs in our decision-making process and
see what the cost difference is between these models.

B. Cost-sensitive decision-making

If we evaluate and compare the performance of all models
based solely on accuracy, model a) would be the obvious
choice. When considering the F1-score instead, which is
also frequently used for the evaluation of (supervised)
classification tasks [16], this would lead to the same result.
The accuracy of model a) is about 1% better than the other
models and F1-score is 2% to 3% better compared to the

other models with the same dataset.
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Fig. 3. Confusion Matrix results of E.3 – with DII , adjusted labels by expert
feedback R2 and 5th numerical feature.

Based on the expert statements and main goal of the
project, described in the previous subsection already, it is
possible to derive (estimated) additional costs for each of the
classification results. For example, suppose that the disposal
of an irreparable part costs 15 units because of the time and
resources involved. The repair of a level B defect costs 3 units
and the repair of a level A defect costs 2 units. For all correctly
predicted instances xi there will be no additional costs. For
a level B defect, which is considered irreparable, there is an
additional cost of 12. The repair of the defect would usually
have cost 3. However, the resulting cost is 15 because the
part is discarded and resources are wasted. We can summarize
those costs in a matrix Cij where (i,j) are the costs of an
instance of true class j being predicted as class i [12].

This cost matrix for the case study thus looks as follows:

Cij =

0 1 13
2 0 12
6 3 0

 (1)

The sum of the additional costs per instance is given by:

J =
∑
i,j

Pij · Cij (2)

Where Pij refers to the confusion matrix resulting from the
respective model. For the shown models in experiment E.3,
the final, estimated additional costs would be:

a) J = 335
b) J = 281
c) J = 366
d) J = 370



Thus, for our use case, model b) would actually be
the most suitable, even though it does not perform best in
terms of accuracy, which was a). It even performs worst in
terms of F1-score. However, an analysis of the resulting costs
reveals that in comparison to model a), model b) generates
approximately 16% less cost – which better reflects the
additional goals expressed by process experts, answering
RQ4. Clearly, the cost matrices need to be adaptable to
different rollouts of the system but the results shows that
optimization according to typical metrics is not sufficient.

C. Advantage of a model-based decision compared to a human
decision

When investigating RQ5, the expert feedback on the pre-
vious labels, collected and presented in section IV-A, can be
used as a guide to the extent to which a person introduces
error into their decision. Human error in this respect is quite
normal, as the decision about the severity of a defect and
thus the appropriate and optimal repair action is based on
subjective, visual perception and judgment. As model-based
decision-making promises to improve the quality, reliability,
and reproducibility of the selected repair actions, we will
explore this in the following in more detail.

As a baseline for the label error rate, the ratio of “not ok”
or “irreparable” feedbacks is about 11.9% in DI and about
10.6% in DII. It should be noted that only false negatives can
be detected: As already described in section IV-A, feedback
can only be given if the selected intensity is not sufficient, i.e.
the defect in question would have required a level B if level A
had been selected, or cannot be repaired, or a level B defect
cannot be processed with the existing repair strategies. It is
not possible to see if a misclassification occurs the other way
around, i.e. if a lower intensity would have been sufficient, or
if a defect marked as irreparable could have been repaired.
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Fig. 4. Comparing model error with human error.

A closer look at these false negatives in our model (marked
in green in Figure 4) reveals a total of 83 out of a total of 804
data points in the validation dataset. This is about 10.3%. If
the same is calculated from the results of the cross-validation
with the training data set, the proportion of false negatives is
only around 9.4% which shows that our model is already very
good at keeping up with human decisions, if not better.

Assuming that a human decision would make about the
same number of errors in the direction of false positives
(marked in orange in fig. 4), we can see a clear improvement
and, above all, a reproducible and thus reliable decision by
the model. In addition to the benefits of automating the
spot-repair process, regarding time and cost, the model-based
decision making can also demonstrably reduce the cost of
misclassification.

VI. CONCLUSION AND FUTURE WORK

The automation of repair robots, such as paint repair robots,
in automotive manufacturing is a challenging process. An im-
portant part of automating the whole process chain from defect
detection to defect curation is the subprocess of selecting and
executing a suitable repair strategy. As this process is still often
carried out manually, there is great potential to reduce time and
costs and enable companies to handle higher volumes.

We show a proof of concept on how the above subprocess
can be automated by using machine learning. To do so, we
use data from the previous subprocess of automated visual
inspection for defect detection. Our first model did not yet
meet the end users’ requirements, so we show how the use
of data-centric methods can improve performance step by
step. Due to a frequent problem of subjective label assess-
ment, we used expert feedback on our labels to improve
our labels and therefore data quality. This step resulted in
significantly improved results, especially when considering the
classification of faults that cannot be repaired with the existing
repair recipes. The average f1-score increased up to 7%.
Assuming correct labels, a nearest-neighbor analysis reveals a
lack of information in the available features. Through feature
engineering, especially collecting and adding one feature based
on expert recommendation, we were able to improve model
performance a second time. Overall, during the whole machine
learning process, we were able to increase the F1-score by up
to 12,7% (depending on the algorithm and hyperparameters).

Finally, through goal-oriented model selection using
cost-sensitive learning, we were able to select the model that
best met the needs of the end users. We used an example
to show the impact of choosing a model on the accuracy or
F1-score compared to including additional knowledge based
on end-user goals and the cost of misclassification to the
decision. We can choose a model that has a proven cost
advantage over manual human decision-making and can lead
to time and cost savings in the overall process.

With an average result of around 88% accuracy, we have
not yet reached our goal. Nevertheless, the best model selected
is already deployed and used in industrial practice. First
investigations show that there is still some uncertainty in the
labels. Future research will therefore focus on dealing with
these uncertainties – for example by placing them into different
levels of confidence for predictions [21]. By using further
data-centric methods – e.g. Confident Learning [10] – we
plan to gradually improve the quality of the data and thus
the performance of the models, to reach the target value.
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