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Abstract

The progress of natural language processing
(NLP) is primarily driven by machine learn-
ing that optimizes a system on a large-scale set
of task-specific labeled examples. This learn-
ing paradigm limits the ability of machines to
have the same capabilities as humans in han-
dling new tasks since humans can often solve
unseen tasks with a couple of examples accom-
panied by task instruction. In addition, we may
not have a chance to prepare task-specific ex-
amples of large-volume for new tasks because
we cannot foresee what task needs to be ad-
dressed next and how complex to annotate for
it. Therefore, task instructions act as a novel
and promising resource for supervision.

This tutorial targets researchers and practition-
ers who are interested in AI and ML technolo-
gies for NLP generalization in a low-shot sce-
nario. In particular, we will present a diverse
thread of instruction-driven NLP studies that
try to answer the following questions: (i) What
is task instruction? (ii) How to construct task
instructions? (iii) How to encode task instruc-
tion? (iv) How generalizable are the systems
trained on task instructions? (v) How robust is
learning from task instructions? We will dis-
cuss several lines of frontier research that tackle
those challenges and will conclude the tutorial
by outlining directions for further investigation.

1 Introduction

This proposal is driven by a fundamental question
of task generalization in NLP: how to comprehend
a new task if labeled examples are pretty limited?
One goal of AI is to build a system that can con-
tinually understand and solve new tasks. Labeled
examples, as the mainstream task representation,
are unlikely to be available in large numbers or
even do not exist. Then, is there any other task rep-
resentation that can contribute to task comprehen-
sion? Task instructions provide another dimension
of supervision for expressing the task semantics.

Instructions often contain more abstract and more
comprehensive knowledge of the target task than
individual labeled examples. With the availability
of task instructions, systems can be quickly built
to handle new tasks, especially when task-specific
annotations are scarce (Wang et al., 2022; Yin et al.,
2022). Instruction Learning is inspired by the typi-
cal human learning for new tasks, e.g., a little kid
can well solve a new mathematical task by learn-
ing from its instruction and a few examples. The
communities of machine learning and NLP, how-
ever, have paid little attention to this new learning
paradigm.

Despite the importance, frontier research in in-
struction learning is still struggling with the fol-
lowing questions. First, should instructions be con-
structed to express the target task as detailed as
possible (e.g., MTurk instructions (Mishra et al.,
2022)) or to align with the format of supervising
tasks (e.g., textual entailment (Yin et al., 2019) or
language modeling (Brown et al., 2020a)) as well
as possible? Second, how to effectively encode
instructions that may consist of some specific re-
quirements such as “maximal output length 5”, and
“do not generate anything else apart from one of
the following · · ·”? Third, how generalizable are
the systems trained on task instructions in dealing
with unseen tasks? Last, how robust will a pre-
trained instruction-driven system be to cope with
instructions that are written by different annotators
or varying degrees of abstraction?

In this tutorial, we will systematically review
several lines of frontier research on developing
systems that are supervised by task instructions.
Beyond introducing pioneering work that parsed
instructions to cope with individual tasks, such as
soccer game (Kuhlmann et al., 2004), software con-
trol (Branavan et al., 2009, 2011), etc., we will
focus on recent approaches for cross-task general-
ization given task instructions. Specifically, three
dimensions of instructions will be introduced: (i)



entailment-oriented task instructions, where tasks
are converted into textual entailment and instruc-
tions are constructed to fit the indirect supervision
of textual entailment; (ii) PLM-oriented task in-
structions (i.e., prompts), where NLP tasks are
transformed into language modeling problems and
prompts act as instructions to probe the pretrained
language model (PLM); (iii) human-oriented task
instructions (i.e, Amazon MTurk instructions),
where instructions are created by users who are not
expert of machine learning or NLP but machines
are expected to understand them.

Participants will learn about recent trends and
emerging challenges in this topic, representative
tools and learning resources to obtain ready-to-use
models, and how related technologies benefit end-
user NLP applications.

2 Outline of Tutorial Content

This half-day tutorial presents a systematic
overview of recent advancements in NLP with su-
pervision from task instructions. The detailed con-
tents are outlined below.

2.1 Background and motivation [15min]

We will define the main research problem and moti-
vate the topic by presenting several real-world NLP
and knowledge-driven AI applications, as well as
several key challenges that are at the core of con-
ventional machine learning.

2.2 Following instructions for particular tasks
[30min]

Early works interpreted instructions through se-
mantic parsing in the context of providing natu-
ral language interfaces to computer systems. We
first review some non-NLP work, such as follow-
ing navigational instructions (Vogel and Jurafsky,
2010; Chen and Mooney, 2011; Tellex et al., 2011;
Chen, 2012; Kim and Mooney, 2012; Artzi and
Zettlemoyer, 2013), software control (Branavan
et al., 2009, 2010), querying databases (Clarke
et al., 2010), understanding visual scenes in the
physical world (Matuszek et al., 2012; Krishna-
murthy and Kollar, 2013; Srivastava et al., 2017a),
VirtualHome environment (Puig et al., 2018) and
playing games based on text (Chen and Mooney,
2008; Eisenstein et al., 2009; Liang et al., 2009;
Branavan et al., 2011; Goldwasser and Roth, 2011;
Bisk et al., 2016), then focus on the NLP domain.
For example, Srivastava et al. (2018) studied zero-

shot email classification by parsing the NL quantifi-
cation. Some works parsed the task explanations
to learn new email categories (Srivastava et al.,
2017b), or to generate noisy labeled datasets for
training classifiers in relation extraction and ma-
chine comprehension (Hancock et al., 2018; Ye
et al., 2020; Wang et al., 2020).

Whether they are non-NLP or NLP-specific, this
subsection focuses on a single task by learning a
task-specific instruction interpreter.

2.3 Entailment-oriented task instructions
[30min]

For most zero/few-shot text classification tasks,
such as topic classification, entity typing, relation
identification, etc., the main obstacle is to let sys-
tems understand the semantics of labels. In con-
trast to conventional supervised classifiers, which
converted labels into indices, a textual entailment
based methodology takes into account the input se-
mantics as well as label semantics. In specific, we
will introduce typical work that treats different top-
ics (Yin et al., 2019), stances (Xu et al., 2022), en-
tity types (Li et al., 2022), and entity relations (Xia
et al., 2021; Sainz et al., 2021, 2022) as hypotheses
(i.e., instructions) and the inputs as premises, then
makes use of the indirect supervision from textual
entailment to handle a variety of classification tasks
with open-domain texts and open-form labels.

2.4 PLM-oriented task instructions [30min]
Prompting is the practice of representing a task
as a brief utterance in order to query a PLM for a
response. PLM-oriented instruction learning is able
to get rid of human-annotated supervision (e.g.,
textual entailment) and relies on fully unsupervised
language models. We will briefly review literature
that employed prompts for sentence-level tasks,
such as machine translation, question answering
(Radford et al., 2019), sentiment analysis, textual
entailment (Schick and Schütze, 2020, 2021a), etc.,
and mainly elaborate on PET (Schick and Schütze,
2020, 2021a, 2022), which makes use of prompts
for real-world few-shot NLP.

In addition, the process of prompt engineering
is critical for successful deployment as choices
in prompting can affect downstream predictions
significantly. It motivates a practical challenge:
how can users create, refine, and share prompts?
We will introduce (Bach et al., 2022) that created
a Web-based UI, called “PromptSource”, that en-
ables developers to write prompts in a templating



language and immediately view their outputs on dif-
ferent examples, based on which over 2,000 open-
source prompts have been collected for roughly
170 NLP tasks. This collection, named “Public
Pool of Prompts (P3)” has allowed users to check
zero-shot cross-task generalization (Sanh et al.,
2021), zero- and few-shot cross-lingual general-
ization (Lin et al., 2021), and in-context learning
(Min et al., 2021). While these prompt-based re-
sults are encouraging, such prompts are often too
simplistic, whereas many real NLP problems can-
not be effectively formulated as short prompts.

2.5 Human-oriented task instructions [30min]
To handle the limitations of prompt-based PLMs,
we further introduce instructions that are human-
oriented. Two reasons: (i) prompts are too short
to express the details of a task; (ii) prompts are
PLM-oriented, while in the real world, we hope
our AI system can be operated by humans who are
not machine learning experts but can instruct what
and how to do.

We first introduce (Efrat and Levy, 2020) that
tested GPT-2 (Radford et al., 2019) to understand
real-world MTurk instructions to annotate some
popular datasets, and concluded that GPT-2 works
poorly, then highlight (Mishra et al., 2021; Wang
et al., 2022) that collected more than 1.6k cross-
lingual NLP tasks with MTurk instructions consist-
ing of items like title, definition, things
to avoid, etc., and claimed that BART (Lewis
et al., 2020) and GPT-3 (Brown et al., 2020b) ben-
efit from instructions to generalize across tasks,
and finally mention how Yin et al. (2022) built
machines to learn tasks incrementally with MTurk
instructions.

2.6 Robustness of learning from task
instructions [30min]

Most instruction-driven systems assume that each
task has a single instruction. We can imagine
that different users can convey a task with instruc-
tions of distinct textual expressions. Some prompt-
based PLMs also show varying performance in
dealing with prompts of different templates (Schick
and Schütze, 2021b; Kojima et al., 2022). Ques-
tions arise: are the PLMs robust enough to han-
dle expression-varying instructions of the same
task? To the end, we will introduce the work by
Gu and Yin (2022) that explored the robustness
of pretrained instruction learning system in han-
dling (i) the same task with distinct instructions

written by different MTurkers, and (ii) instruction
of varying-degrees of abstractions.

2.7 Future research directions [15min]
In this section, we will discuss future work in the
following threads: (i) generating instructions from
labeled examples, (ii) explainable instruction learn-
ing, and (iii) how to encode instructions without
the help of labeled examples, etc.

3 Specification of the Tutorial

The proposed tutorial is considered a cutting-edge
tutorial that introduces new frontiers in NLP/AI
research. The presented topic has not been cov-
ered by ACL/EMNLP/NAACL/EACL/COLING
tutorials in the past 4 years.

Audience and Prerequisites Based on the level
of interest in this topic, we expect around 100 par-
ticipants. While no specific background knowledge
is assumed of the audience, it would be the best
for the attendees to know about basic deep learn-
ing technologies, pre-trained language models (e.g.
BERT).

4 Tutorial Instructors

The following are biographies of the speaker.

Wenpeng Yin is an Assistant Professor at Tem-
ple University. Prior to joining Temple, he was a
Senior Research Scientist at Salesforce Research
(8/2019-12/2021), a postdoctoral researcher at
UPenn (10/2017-7/2019), and got his Ph.D. de-
gree from the LMU Munich, Germany, in 2017.
Dr. Yin’s research focuses on natural language
processing with three sub-areas: (i) learning from
task instructions; (ii) information extraction; (iii)
learning with limited supervision. Additional infor-
mation is available at www.wenpengyin.org.

Hinrich Schütze is Chair of Computational
Linguistics and co-director of the Center of In-
formation and Language Processing at Ludwig-
Maximilians-Universität München. Prior to join-
ing LMU Munich, he was a Professor of Theoreti-
cal Computational Linguistics at the University of
Stuttgart. Hinrich holds a PhD in computational
linguistics from Stanford University. We was a sci-
entist at the XEROX Palo Alto Research Center
from 1995 to 2000 and was involved in leading
roles in a number of Silicon Valley startups from
2000 to 2004. Additional information is available
at https://schuetze.cis.lmu.de.

www.wenpengyin.org
https://schuetze.cis.lmu.de
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