Working Papers

Zukunft in Bewegung

Working Paper

Heft Nr. 64 aus der Reihe "Arbeitsberichte – Working Papers"

ISSN 1612-6483 Ingolstadt, im März 2022

Wolfgang Krämer

Optimale Approximation von Verzögerungsgliedern zweiter Ordnung durch Verzögerungsglieder erster Ordnung

Abstract

Es werden Methoden für die optimale Approximation von Verzögerungsgliedern zweiter Ordnung durch Verzögerungsglieder erster Ordnung vorgestellt. Die Approximationen erfolgen einerseits im Zeit- und im Frequenzbereich, andererseits für Verzögerungsglieder mit aperiodischem und mit gedämpftem oszillierendem Verhalten. Die Approximationen im Zeitbereich können weitgehend analytisch durchgeführt werden; die Frequenzbereichsapproximationen müssen numerisch berechnet werden.

Die mit den vorgeschlagenen Methoden erzielten Ergebnisse werden vorgestellt und diskutiert.

Key Words:

Modellreduktion, Verzögerungsglied zweiter Ordnung, Zeitbereich Aperiodisch gedämpftes Verzögerungsglied, Frequenzbereich Schwingungsfähiges Verzögerungsglied

Optimale Approximation von Verzögerungsgliedern zweiter Ordnung durch Verzögerungsglieder erster Ordnung

Von Wolfgang Krämer

1 Einleitende Übersicht

In der Regelungstechnik werden für den Entwurf und die Analyse von Regelungen häufig reduzierte, d.h. vereinfachte, Modelle der Regelstrecke verwendet, s. z.B. [1], [2], [3].

Die reduzierten Modelle haben eine niedrigere Ordnung als vollständige, komplexe Modelle; sie beschreiben das dynamische Verhalten der Regelstrecke nur näherungsweise. Die Verwendung solcher vereinfachten Modelle ist insbesondere für den Entwurf einfacher Regler, z.B. vom PID-Typ, zweckmäßig [4], wobei darauf zu achten ist, dass die Regelung im Hinblick auf Modellungenauigkeiten robust ist. In der vorliegenden Arbeit wird die Bestimmung reduzierter dynamischer Modelle in einem speziellen Fall untersucht.

Die Zeitkonstante eines Verzögerungsglieds erster Ordnung, d.h. eines PT₁-Glieds, wird so bestimmt, dass das Verhalten eines Verzögerungsglieds zweiter Ordnung, eines PT₂-Glieds, optimal approximiert wird. Die Approximation erfolgt zunächst im Zeitbereich für aperiodisch gedämpfte PT₂-Glieder, indem die Sprungantwort des PT₁-Glieds optimal angepasst wird.

Dabei wird die sog. T-Summen-Regel bzw. T-Summen-Zeitkonstante bestätigt [1], [2]. Sodann wird das Approximationsverfahren auf gut gedämpfte schwingungsfähige Verzögerungsglieder ausgeweitet. Basierend auf den damit erzielten Ergebnissen wird ein Bereich für das Dämpfungsmaß vorgeschlagen, in dem die Approximation mit guter Genauigkeit möglich ist. Zum Abschluss der Untersuchungen im Zeitbereich wird kurz der aperiodische Grenzfall betrachtet.

Schließlich wird eine Modellreduktion im Frequenzbereich durch eine optimale Approximation des Amplitudengangs durchgeführt; auch dabei wird von aperiodisch gedämpften und von gut gedämpften schwingungsfähigen Verzögerungsgliedern zweiter Ordnung ausgegangen.

2 Approximation im Zeitbereich

2.1 Approximation aperiodisch gedämpfter PT₂-Glieder

Das dynamische Verhalten aperiodisch gedämpfter PT₂-Glieder kann durch die Übertragungsfunktion

$$G_2(s) = \frac{K}{(1+T_1s)(1+T_2s)}$$
(1)

mit den Zeitkonstanten $T_1 > 0$ und $T_2 > 0$ sowie dem Verstärkungsfaktor $K \neq 0$ beschrieben werden. Das Verhalten dieses PT₂-Glieds soll durch ein PT₁-Glied mit der Übertragungsfunktion

$$G_1(s) = \frac{K}{1 + T_1^* s}$$
(2)

approximiert werden. Es ist offensichtlich, dass das PT₁-Glied den gleichen Verstärkungsfaktor *K* wie das PT₂-Glied haben muss, um stationäre Genauigkeit sicherzustellen. Damit kann ohne Einschränkung der Allgemeinheit K = 1 gesetzt werden. Die Zeitkonstante T_1^* des PT₁-Glieds ist zu bestimmen. Dies erfolgt wie oben erwähnt durch eine optimale Approximation der Sprungantwort des PT₂-Glieds.

Die Einheitssprungantwort des PT₂-Glieds ist bekanntlich für $T_1 \neq T_2$ (K = 1), s. z.B. [1]

$$h_2(t) = 1 - \frac{T_1}{T_1 - T_2} e^{-t/T_1} + \frac{T_2}{T_1 - T_2} e^{-t/T_2}.$$
(3)

Sie soll durch die Einheitssprungantwort

$$h_{1}(t) = 1 - e^{-t/T_{1}^{*}}$$
(4)

des PT1-Glieds approximiert werden.

Als Optimierungskriterium wird das Integral der quadratischen Abweichung der Sprung-antworten

$$I = \int_{0}^{\infty} (h_2(t) - h_1(t))^2 dt$$
(5)

verwendet. Nach kurzer Zwischenrechnung erhält man

$$I(T_1^*) = \frac{1}{2} \cdot \frac{T_1^2 + 3T_1T_2 + T_2^2}{T_1 + T_2} + \frac{1}{2}T_1^* - 2\frac{(T_1 + T_2)T_1^* + T_1T_2}{(T_1 + T_1^*)(T_2 + T_1^*)}T_1^*.$$
(6)

Für die folgenden Überlegungen und Berechnungen ist es zweckmäßig, T_2 auf T_1 und T_1^* auf $T_1 + T_2$ zu beziehen:

$$T_2 = k \cdot T_1, \tag{7}$$

$$T_1^* = c \cdot (T_1 + T_2) = c \cdot (1 + k) \cdot T_1.$$
(8)

Die Konstante k > 0 ist also das Verhältnis der Zeitkonstanten T_2 und T_1 ; c > 0 kann als normierte Zeitkonstante T_1^* des PT₁-Glieds und $T_1 + T_2$ als Maß für die "Gesamtverzögerung" des PT₂-Glieds betrachtet werden. Damit geht das Kriterium *I*, das nun von *c* abhängt, über in

$$I(c) = \left[\frac{1}{2} \cdot \frac{1+3k+k^2}{1+k} + \frac{1}{2} \cdot c(1+k) - 2c(1+k)\frac{k+c(1+k)^2}{(1+c(1+k))(k+c(1+k))}\right]T_1.$$
 (9)

Die Konstante *c* wird nun so bestimmt, dass das Kriterium ein Minimum annimmt. Hierfür wird wie üblich dI / dc = 0 gesetzt. Dies führt auf

$$(1+k)^4 c^4 + 2(1+k)^4 c^3 - 3(1+k^2)(1+k)^2 - 6k(1+k)^2 c - 3k^2 = 0.$$
 (10)

Nach der Descartesschen Zeichenregel [5] hat Gl. (10) eine positive Lösung. Also gibt es einen eindeutigen optimalen Wert für *c*. Dieser Wert lässt sich weiter eingrenzen: Bezeichnet man das Polynom der linken Seite von Gl. (10) mit P(c), dann ist P(1) < 0 und $P(c) \rightarrow \infty$ für $c \rightarrow \infty$. Also ist c > 1 (entspr. $T_1^* > T_1 + T_2$).

Offensichtlich hängt die Konstante *c* nur vom Verhältnis $k = T_2 / T_1$ der Zeitkonstanten des PT₂-Glieds ab. <u>Bild 1</u> zeigt diesen Zusammenhang.

Man erkennt:

• Die Konstante *c* ist für alle Werte von *k* nur unwesentlich größer als eins. Damit ist $T_1^* \approx T_1 + T_2$ eine gute Näherung für T_1^* ; dies bestätigt die T-Summenregel [1], [2] für den untersuchten Fall.

- Das Maximum für *c* ergibt sich für k = 1, d.h. für $T_1 = T_2$, zu c(k = 1) = 1,0321. T_1^* ist also höchstens um ca. 3,2 % größer als $T_1 + T_2$.
- Der Verlauf von c(k) ist symmetrisch zu k = 1. Dies ist einleuchtend, da die Festlegung der Zeitkonstanten T₁ bzw. T₂ des PT₂-Glieds willkürlich ist.

Es wird darauf hingewiesen, dass die Ergebnisse auch für k = 1 bzw. $T_1 = T_2$ gültig sind, da durch Reihenentwicklung gezeigt werden kann, dass die Sprungantwort nach Gl. (3) für $T_1 \rightarrow T_2$ in die Sprungantwort für $T_1 = T_2$, d.h. die Sprungantwort für den asymptotischen Grenzfall, übergeht. Die Gln. (6), (8) und (10) können auch für diesen Fall problemlos ausgewertet werden. Auf die Einschränkung $T_1 \neq T_2$ kann also verzichtet werden.

<u>Bild 2</u> zeigt Sprungantworten von PT₂-Gliedern und optimal approximierten PT₁-Gliedern für verschiedene Werte von *k*. Die Sprungantworten sind in Abhängigkeit der normierten Zeit $t / (T_1 + T_2)$ dargestellt; diese Normierung ist gleich wie die der Zeitkonstanten T_1^* . Man erkennt, dass die Sprungantworten des approximierten Systems diejenigen des PT₂-Glieds gut annähern. Infolge der Zeitnormierung sind die Kurvenverläufe für k = 0,1 und k = 10 gleich; dies entspricht der Symmetrie in Bild 1.

Die Qualität der Approximation kann auch anhand des Optimierungskriteriums untersucht werden. Hierfür wird das normierte, dimensionslose Kriterium

$$I_{\rm norm} = I / (T_1 + T_2) \tag{11}$$

betrachtet; das Kriterium wird also gleich wie die Zeit *t* normiert. <u>Bild 3</u> zeigt I_{norm} für die optimale Approximation in Anhängigkeit vom Verhältnis *k*. Der Verlauf des Kriteriums $I_{\text{norm}}(k)$ ist symmetrisch zu k = 1 wie der Verlauf von c(k) in Bild 1. Die Approximation ist für k = 1 am schlechtesten, worauf auch Bild 2 hindeutet. Je mehr sich *k* vom Wert eins unterscheidet, desto besser ist die Approximation. Dies ist einleuchtend, da sich für kleine und große Werte von k die Zeitkonstanten T_1 und T_2 stark unterscheiden und die kleine Zeitkonstante gegenüber der großen vernachlässigt werden kann.

2.2 Approximation gut gedämpfter schwingungsfähiger PT₂-Glieder

Das im vorhergehenden Abschnitt beschriebene Vorgehen wird auf die Approximation schwingungsfähiger PT₂-Glieder übertragen. Natürlich ist zu erwarten, dass die Approximation in diesem Fall weniger gut ist, da das PT₁-Glied das Überschwingen der Sprungantwort, das für schwingungsfähige PT₂-Glieder typisch ist, nicht wiedergeben kann. Das wird aber nicht als ein wesentliches Problem betrachtet, da es ja auch bei der Approximation aperiodisch gedämpfter PT₂-Glieder den prinzipiellen Unterschied gibt, dass die Sprungantwort des PT₂-Glieds bei t = 0 eine waagrechte Tangente hat, wogegen die Steigung der Sprungantwort des PT₁-Glieds bei t = 0 nicht null sondern K / T_1^* ist. Dieses unterschiedliche Verhalten wird allgemein akzeptiert. Somit sollte auch der Unterschied hinsichtlich des Überschwingens akzeptabel sein, sofern die Sprungantwort des PT₂-Glieds nur wenig überschwingt. In diesem Zusammenhang wird auch diskutiert, bis zu welchem Überschwingen bzw. für welche Werte des Dämpfungsmaßes die Approximation zu guten Ergebnissen führt.

Das gedämpfte schwingungsfähige PT₂-Glied wird durch die Übertragungsfunktion

$$\tilde{G}_{2}(s) = \frac{K\omega_{0}^{2}}{s^{2} + 2D\omega_{0}s + \omega_{0}^{2}}$$
(12)

mit dem Dämpfungsmaß 0 < D < 1 und der ungedämpften Kreisfrequenz $\omega_0 > 0$ (engl.: natural frequency) beschrieben. Der Verstärkungsfaktor kann wieder als K = 1 vorausgesetzt werden.

Für die Approximation wird, wie häufig bei der Untersuchung schwingungsfähiger Systeme, die normierte Zeit

$$\tau = \omega_0 t \tag{13}$$

verwendet. Die Sprungantwort des PT₂-Glieds ist damit [1]

$$\tilde{h}_{2}(\tau) = 1 - e^{-D\tau} \left(\frac{D}{\sqrt{1 - D^{2}}} \sin\left(\sqrt{1 - D^{2}}\tau\right) + \cos\left(\sqrt{1 - D^{2}}\tau\right) \right).$$
(14)

Mit der Normierung (13) wird die Zeitkonstante T_1^* des PT₁-Glieds nach Gl. (2) zu

$$\tau_1^* = \omega_0 T_1^*$$
 (15)

und seine Sprungantwort

$$h_1(\tau) = 1 - e^{-\tau/\tau_1^2}$$
 (16)

Nun muss also ein günstiger Wert von τ_1^* bestimmt werden. Hierfür wird das Kriterium

$$\tilde{I}_{norm} = \int_{0}^{\infty} (\tilde{h}_{2}(\tau) - h_{1}(\tau))^{2} d\tau$$
(17)

minimiert; wegen der Zeitnormierung (13) ist es bereits normiert. Man erhält

$$\tilde{I}_{\text{norm}} = \frac{\tau_1^*}{2} - \frac{4D\tau_1^{*2} + 2\tau_1^*}{\tau_1^{*2} + 2D\tau_1^* + 1} + \frac{4D^2 + 1}{4D}.$$
(18)

Um den optimalen Wert von τ_1^* zu bestimmen, wird \tilde{I}_{norm} minimiert. Setzt man $d\tilde{I}_{norm} / d\tau_1^* = 0$, erhält man

$$\tau_1^{*4} + 4D\tau_1^{*3} + 6(1 - 2D^2)\tau_1^{*2} - 12\tau_1^* - 3 = 0.$$
⁽¹⁹⁾

Nach der Descartesschen Zeichenregel hat auch Gl. (19) eine positive Lösung, so dass es einen eindeutigen optimalen Wert für τ_1^* gibt. <u>Bild 4</u> zeigt diesen Wert in Abhängigkeit des Dämpfungsmaßes *D*.

Die Ergebnisse sind auch für das Dämpfungsmaß D = 1 gültig, da die Sprungantwort $\tilde{h}_2(\tau)$ nach Gl. (14) für $D \rightarrow 1$ in die Sprungantwort für D = 1, d.h. die Sprungantwort für den aperiodischen Grenzfall, übergeht, wie sich durch Reihenentwicklung zeigen lässt.

Bild 5 zeigt Sprungantworten von schwingungsfähigen PT₂-Gliedern und optimal approximierten PT1-Gliedern für verschiedene Werte von D. Man erkennt, dass die Approximation mit abnehmender Dämpfung schlechter wird, was auch zu erwarten ist. Dies zeigt auch Bild 6, in dem der minimale Wert des Optimierungskriteriums $I_{\rm norm}$ nach GI. (17) in Abhängigkeit des Dämpfungsmaßes D dargestellt ist; \tilde{I}_{norm} nimmt mit abnehmender Dämpfung zu.

konstanten τ_1^* (rot) in Abhängigkeit der normierten Zeit τ für verschiedene Werte von *D*

Anhand der in Bild 6 dargestellten Werte von \tilde{I}_{norm} kann diskutiert werden, für welche Werte des Dämpfungsmaßes D die Approximation gut ist. Für D = 1, d.h. für den aperiodischen Grenzfall, hat das Kriterium den kleinsten Wert $\tilde{I}_{norm}(D=1) = 0,0272$. Auf Basis dieses Werts soll nun ein Bereich des Dämpfungsmaßes $D_{min} \leq D \leq 1$ für eine gute Approximation definiert

werden. Akzeptiert man z.B. eine Verdoppelung des Werts $\tilde{I}_{norm}(D=1)$, ergibt sich die Untergrenze $D_{min} = 0,768$ für eine gute Approximation. Die Güte der Approximation in dem entsprechenden Bereich für *D* kann anschaulich anhand des oberen und mittleren Diagramms in Bild 5 beurteilt werden.

Die Untergrenze $D_{\min} = 0,768$ unterscheidet sich nur wenig von dem

Wert $D = \sqrt{1/2} \approx 0,707$, der oft als günstiges Dämpfungsmaß für schnelles Einschwingen und geringes Überschwingen dynamischer Systeme, insbesondere geschlossener Regelkreise, angestrebt wird. Hierfür ist der Wert des Kriteriums $\tilde{I}_{norm} (D = \sqrt{1/2}) = 2,461 \cdot \tilde{I}_{norm} (D = 1)$. Diese Zunahme des Kriteriums könnte man auch als akzeptabel betrachten, so dass als Untergrenze des Bereichs für das Dämpfungsmaß, in dem das schwingungsfähige PT2-Glied gut approximiert werden kann, Werte von $D_{min} = \sqrt{1/2} \dots 0,768$ in Betracht kommen.

Für $D = \sqrt{1/2}$ schwingt die Sprungantwort des PT₂-Glieds um ca. 4 % über. Damit ist der am Anfang dieses Abschnitts erläuterte prinzipielle Unterschied der Sprungantworten des PT₁und des PT₂-Glieds hinsichtlich des Überschwingens für den empfohlenen Bereich $D_{\min} \le D \le 1$ in der Tat unproblematisch.

2.3 Aperiodischer Grenzfall

Wie bereits erwähnt gelten die oben dargestellten Ergebnisse jeweils auch für k = 1 ($T_1 = T_2$) bzw. für D = 1, d.h. für den aperiodischen Grenzfall. In <u>Tabelle 1</u> sind diese Ergebnisse zusammengestellt. Das nicht normierte Kriterium für den schwingungsfähigen Fall ist $\tilde{I} = \tilde{I}_{norm} / \omega_0$, vgl. Gln. (13) und (17). Man sieht, dass die Ergebnisse konsistent sind, da bekanntlich $T_1 = 1 / \omega_0$ ist.

Tabelle 1: Ergebnisse für den aperiodischen Grenzfall			
	Auf Basis des aperio- disch gedämpften PT_2 - Glieds ($k = 1$)	Auf Basis des schwin- gungsfähigen PT_2 -Glieds (D = 1)	
Optimale Zeitkonstante	$T_1^* = 2,0642 \cdot T_1$	$T_1^* = 2,0642 / \omega_0$	
Kriterium	$I = 0,0272 \cdot T_1$	$\tilde{I} = 0,0272 / \omega_0$	

3 Approximation im Frequenzbereich

Die Approximation im Frequenzbereich erfolgt, indem der Amplitudengang des PT_1 -Glieds optimal an den Amplitudengang des PT_2 -Gieds angenähert wird. Es ist offensichtlich, dass eine Approximation des Phasengangs nicht sinnvoll ist.

3.1 Approximation aperiodisch gedämpfter PT₂-Glieder

Der Amplitudengang des PT₂-Glieds nach Gl. (1) wird durch

$$A_2(\omega) = \frac{K}{\sqrt{(1 + T_1^2 \omega^2)(1 + T_2^2 \omega^2)}}$$
(20)

beschrieben [1]; der Amplitudengang des PT1-Glieds nach Gl. (2) ist

$$A_{1}(\omega) = \frac{K}{\sqrt{1 + T_{1}^{*2}\omega^{2}}}.$$
(21)

In diesen Beziehungen kann wieder K = 1 gesetzt werden.

Um den optimalen Wert der Zeitkonstanten T_1^* zu bestimmen, wird das Kriterium

$$I_A = \int_0^\infty (A_2(\omega) - A_1(\omega))^2 d\omega$$
(22)

minimiert. Da keine analytische Lösung des Integrals (keine Stammfunktion) bekannt ist, werden die Integration und die Minimierung numerisch durchgeführt. <u>Bild 7</u> zeigt das Ergebnis in Form der normierten Zeitkonstanten *c* nach Gl. (8); das Bild enthält außerdem zum Vergleich das Ergebnis der Approximation im Zeitbereich.

Die Approximation des Amplitudengangs führt zu größeren Werten von *c* bzw. von T_1^* als die Approximation der Sprungantwort. Jedoch zeigt auch das Ergebnis der Approximation im Frequenzbereich, dass die Summe $T_1 + T_2$ eine gute Näherung für T_1^* ist.

Bild 8 zeigt Amplitudengänge von PT₂-Gliedern und optimal approximierten PT1-Gliedern für verschiedene Werte von k. Die Amplitudengänge sind in Abhängigkeit der normierten Kreisfrequenz $\omega \cdot (T_1 + T_2)$ dargestellt. Man erkennt einerseits, dass die Amplitudengänge des approximierten Systems diejenigen des PT₂-Glieds gut annähern. Andererseits zeigt sich, dass wie bei der Approximation im Zeitbereich für k = 1das Ergebnis am schlechtesten ist. Dies kann man auch anhand des normierten **Kriteriums**

$$I_{A,\text{norm}} = I_A \cdot (T_1 + T_2)$$

erkennen, s. Bild 9.

<u>Bild 7</u>: Konstante $c = T_1^* / (T_1 + T_2)$ in Abhängigkeit des Verhältnisses $k = T_2 / T_1$ für optimale Approximation im Frequenz- und Zeitbereich.

3.2 Approximation gut gedämpfter schwingungsfähiger PT₂-Glieder

Wie bereits im Zeitbereich sollen nun gut gedämpfte schwingungsfähige PT_2 -Glieder, deren Verhalten durch die Übertragungsfunktion $\tilde{G}_2(s)$ nach Gl. (12) beschrieben wird, auch im Frequenzbereich approximiert werden. Der Amplitudengang dieser PT_2 -Glieder ist (K = 1), [1]

$$\tilde{A}_{2}(\eta) = \frac{1}{\sqrt{(1-\eta^{2})^{2} + (2D\eta)^{2}}}$$
(23)

mit dem Frequenzverhältnis

4

$$\eta = \omega / \omega_0 \,. \tag{24}$$

Der Amplitudengang (21) des PT1-Glieds lautet in Abhängigkeit des Frequenzverhältnisses

$$A_1(\eta) = \frac{1}{\sqrt{1 + \tau_1^{*2} \eta^2}}$$

mit der normierten Zeitkonstanten τ_1^* nach Gl. (15).

Der optimale Wert von τ_1^* und damit von T_1^* wird durch Minimierung des Kriteriums

$$\tilde{I}_{A,\text{norm}} = \int_{0}^{\infty} (\tilde{A}_{2}(\eta) - A_{1}(\eta))^{2} d\eta$$
(25)

bestimmt, das infolge der Verwendung des Frequenzverhältnisses η bereits normiert ist. Die Integration und Minimierung erfolgen auch hier auf numerische Weise, da keine Stammfunktion des Integranden bekannt ist. Bild 10 zeigt das Ergebnis zusammen mit dem Resultat der Approximation im Zeitbereich. Man erkennt, dass auch hier die Approximation des Amplitudengangs zu größeren Werten von τ_1^* führt als die Approximation der Sprungantwort.

In Bild 11 sind Amplitudengänge von PT₂-Gliedern und optimal approximierten PT1-Gliedern für verschiedene Dämpfungsmaße zusammengestellt. Die Approximation wird mit abnehmenden Werten von D schlechter, wie sich auch anhand des hier nicht dargestellten Kriteriums $\tilde{I}_{A,norm}$ erkennen lässt. Nun kann auch hier diskutiert werden, in welchem **Bereich** $D_{\min} \le D \le 1$ des Dämpfungsma-Bes die Approximation gut ist. Der

<u>Bild 10</u>: Zeitkonstante τ_1^* in Abhängigkeit des Dämpfungsma-Bes *D* für optimale Approximation im Frequenz- und Zeitbereich

kleinste Wert des Kriteriums $\tilde{I}_{A,\text{norm}}$ nach Gl. (25) ergibt sich wieder für D = 1. Akzeptiert man eine Verdoppelung dieses Werts $\tilde{I}_{A,\text{norm}}(D=1)$, ergibt sich eine Bereichsuntergrenze $D_{\min} = 0,766$. Für den oft günstigen Wert $D = \sqrt{1/2}$ ist der Wert des $\tilde{I}_{A,\text{norm}}(D = \sqrt{1/2}) = 2,443 \cdot \tilde{I}_{A,\text{norm}}(D=1)$, der ebenfalls akzeptabel sein dürfte. Als Bereichsuntergrenze kommen also Werte $D_{\min} = \sqrt{1/2} \dots 0,766$ in Betracht. Dieses Ergebnis stimmt gut mit den Werten überein, die für die Approximation der Sprungantwort vorgeschlagen werden, s. Abschnitt 2.2. Auch die Zunahmen der Kriterien für $D = \sqrt{1/2}$ sind ähnlich groß.

3.3 Aperiodischer Grenzfall

Sowohl die Überlegungen des Abschnitts 3.1 für k = 1 als auch die Überlegungen des Abschnitts 3.2 für D = 1 gelten für den asymptotischen Grenzfall. Die in diesen Abschnitten erzielten Ergebnisse sind im Sinn von Abschnitt 2.3 konsistent.

4 Zusammenfassung

Es werden Werte der Zeitkonstanten T_1^* eines PT₁-Glieds für die optimale Approximation des Verhaltens von PT₂-Gliedern bestimmt. Dies erfolgt im Zeitbereich durch Anpassung der Sprungantwort und im Frequenzbereich durch Anpassung des Amplitudengangs des PT₁-Glieds. Die Approximationen erfolgen für PT₂-Glieder mit aperiodischem und mit gut gedämpftem oszillierendem Verhalten. Für den zweiten Fall werden Bereiche $D_{\min} \le D \le 1$ für das Dämpfungsmaß D angegeben, in denen die Approximation mit guter Genauigkeit möglich ist. Die wesentlichen Ergebnisse sind in Tabelle 2 zusammengestellt.

Für den aperiodischen Grenzfall sind sowohl die Ergebnisse der Approximation aperiodisch gedämpfter als auch die Ergebnisse der Approximation schwingungsfähiger PT₂-Glieder gültig. Beide Approximationsverfahren führen in diesem Fall zu konsistenten Ergebnissen.

Tabelle 2: Übersicht der Ergebnisse			
	Für das aperiodisch gedämpfte	Für das schwingungsfähige PT ₂ -	
	PT ₂ -Glied	Glied	
Normierungen	Verh. der Zeitkonst.: $k = T_2/T_1$	Zeitnorm.: $\tau = \omega_0 \cdot t$	
	Zeitnorm.: $c = T_1^* / (T_1 + T_2)$	$\tau_1^* = \omega_0 T_1^*$	
	Analytische Berechnung des Optimierungskriteriums und		
	seiner Ableitung.		
	c ist eindeutige positive Lösung	τ_1^* ist eindeutige positive Lösung	
	einer algebraischen Gl. 4. Grads.	einer algebraischen Gl. 4. Grads.	
Zeitbereich			
	Bestätigung der T-Summenregel	Gute Approximation für Dämp-	
	$T_1^* \approx T_1 + T_2$	fungsmaß Dmin $\leq D \leq 1$ mit	
	Die Approximation ist für k = 1	$D_{\min} = \sqrt{1/2} \dots 0,768$	
	am schlechtesten.		
	Numerische Berechnung und Minimierung des		
	Optimierungskriteriums.		
	Optimale Werte für T_1^* sind größer als bei der Approximation		
Frequenz-	im Zeitbereich.		
bereich	Bestätigung der T-Summenregel	Gute Approximation für Dämp-	
	$T_1^* \approx T_1 + T_2 .$	fungsmaß $D_{\min} \le D \le 1$ mit	
	Die Approximation ist für $k = 1$	$D_{\min} = \sqrt{1/2} \dots 0,766.$	
	am schlechtesten.		

Literatur

- [1] Lunze, J.: Regelungstechnik 1. Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen.12. Auflage. Springer Vieweg, Heidelberg, 2020.
- [2] Lutz, H.; W. Wendt.: Taschenbuch der Regelungstechnik. 12., ergänzte Auflage. Europa-Lehrmittel, Haan-Gruiten, 2021.
- [3] Åström, K; T. Hägglund: Advanced PID Control. ISA, Research Triangle Park, NC, 2006.
- [4] Kuhn, U.: Eine praxisnahe Einstellregel f
 ür PID-Regler: Die T-Summenregel. Automatisierungstechnische Praxis atp 37 (1995) 5, S. 10 – 16.
- [5] Bronstein, I. N.; K. A. Semendjajew; G. Musiol: Taschenbuch der Mathematik. 11., aktualisierte Auflage. Europa-Lehrmittel, Haan-Gruiten, 2020.

Working Paper

Heft Nr. 64 aus der Reihe "Arbeitsberichte – Working Papers"

ISSN 1612-6483 Ingolstadt, im März 2022

Wolfgang Krämer

Optimale Approximation von Verzögerungsgliedern zweiter Ordnung durch Verzögerungsglieder erster Ordnung

Impressum

Herausgeber

Der Präsident der Technischen Hochschule Ingolstadt Esplanade 10, 85049 Ingolstadt Telefon: +49 841 9348-0 Fax: +49 841 9348-2000 E-Mail: info@thi.de

Druck Hausdruck

Die Beiträge aus der Reihe "Arbeitsberichte – Working Papers" erscheinen in unregelmäßigen Abständen. Alle Rechte, insbesondere das Recht der Vervielfältigung und Verbreitung sowie der Übersetzung vorbehalten. Nachdruck, auch auszugsweise, ist gegen Quellenangabe gestattet, Belegexemplar erbeten.

Internet

Alle Themen aus der Reihe "Arbeitsberichte – Working Papers", können Sie unter der Adresse www.thi.de nachlesen.