Skip to main content
Home
jump back to top
deen
Contact
Ingolstadt University of Technology
Contact
deen
Home
  • Philosophy
    • Scholarly Advisory Board
    • Research programme
    • Social and Political Relevance
    • Career
    • Vision of CARISSMA
    • Team
  • News & Press
  • C-IAD
    • C-IAD Institute of Automated Driving
    • Safeguarding automated driving functions using mixed-real
    • Ergonomics and Human Factors
    • Interventions in the vehicle dynamics for autonomous driv
      • STF
      • AUSM
      • KEPF
    • Safeguarding functions and HW using HIL for automated dri
    • Machine Learning for Vehicle Safety Systems
      • SUP
      • MLPOG
      • CARISSMA
      • OLAF
      • VbD
      • IDA
      • ITraCS
      • KIaF
    • Localization and Exteroceptive Sensors
      • REMI
      • MODES
    • Sensor simulation with a focus on weather conditions
    • Simulation-based stochastic efficacy analysis
    • Simulation based validation of vehicle safety functions
  • C-ISAFE
    • C-ISAFE Safety in Future Mobility
      • Professors
      • Research assistants
      • Test engineers
      • Administrative assistants
    • arTIco
    • IFAS
    • Interior detection
    • Integral safety
      • Pain sensitive car body
    • Project ANTON
    • Safe2P
    • SAVE-ROAD
    • SimuSens
    • Test methods for sensor systems
    • Environmental perception
  • C-ECOS
    • C-ECOS Electric, Connected and Secure Mobility
    • Car2X and Cyber-Physical Systems
    • Cooperative Intelligent Transport Systems
      • Car2X Communications for Road Safety and Efficiency
        • ETSI STF 585 MCO
        • KOALA-2
      • Communications for Autonomuous Drones
        • FreeRail
    • Security in Mobility
    • Safe electromobility and accident analysis
      • Cooperative Industrial Projects
      • Behaviour under extremely high loads
      • Safe Vehicle Operation
        • SAFIR IP4-1
        • SAFIR IP4-3
        • Robustness, aging and qualification of battery systems and their safety-relevant components
      • Safe Batterysystems
        • HYPOBATT
        • PRIMA Batteries
        • SUSTAIN
        • SENSE BAY
        • SAFIR IP4-2
        • LIBERA
        • LIKO
      • AHEAD
      • Hands-on-Experiments vs. Computer-based Simulations in Energy Storage Laboratories
  • Laboratories
    • Abuse Attempts
    • Car2X Laboratory
    • [Translate to English:] Labor für Nachhaltige Energiesyst
    • Driving Simulator (Hexapod)
    • Drop Tower
    • Hil Laboratory
    • Real Lab High Definition Testbed
    • Driving Experience Lab
    • Indoor test facility
    • Outdoor Test Facility
    • Mobile robots
    • Security in Mobility
    • Battery Lab
    • Simulation Laboratory
    • semester dates
    • Moodle
    • PRIMUSS Application portal
    • PRIMUSS student's portal
    • Curriculum
    • Webmail
Contact
deen
  1. Home
  2. Research
  3. CARISSMA
  4. Philosophy
  5. Team
  6. Jonas Wurst

Jonas Wurst, M.Sc.


Research Assistant CARISSMA

Phone +49 841 9348-6434
E-Mail extern.Jonas.Wurst@thi.de
Room: U102

Research


  • Intelligent Data Recording in the Automotive Field (IDA)

  • BayWISS-Kolleg Mobility & Transport

Publications


  • L. Balasubramanian, J. Wurst, R. Egolf, M. Botsch, W. Utschick, K. Deng, "ExAgt: Expert-guided Augmentation for Representation Learning of Traffic Scenarios", IEEE International Conference on Intelligent Transportation Systems, Macau, Macau, 2022. [ accepted | arXiv ]
  • A. Flores Fernández, J. Wurst, E. Sánchez Morales, M. Botsch, C. Facchi and A. García Higuera, "Probabilistic Traffic Motion Labeling for Multi-Modal Vehicle Route Prediction", MDPI Journal Sensors Vol. 22 Iss. 12, 2022 [ MDPI ]
  • J. Wurst, L. Balasubramanian, M. Botsch, W. Utschick, "Expert-LaSTS: Expert-Knowledge Guided Latent Space for Traffic Scenarios", IEEE Intelligent Vehicles Symposium, Aachen, Germany, 2022. [ IEEE | arXiv ]
  • L. Balasubramanian, J. Wurst, M. Botsch and K. Deng, "Traffic Scenario Clustering by Iterative Optimisation of Self-Supervised Networks Using a Random Forest Activation Pattern Similarity", IEEE Intelligent Vehicles Symposium, Nagoya, Japan, 2021. [ IEEE | arXiv ]
  • J. Wurst, L. Balasubramanian, M. Botsch, W. Utschick, "Novelty Detection and Analysis of Traffic Scenario Infrastructures in the Latent Space of a Vision Transformer-Based Triplet Autoencoder ", IEEE Intelligent Vehicles Symposium, Nagoya, 2021. [ IEEE | arXiv ]
  • J. Wurst, A. Flores Fernández, M. Botsch and W. Utschick, "An Entropy Based Outlier Score and its Application to Novelty Detection for Road Infrastructure Images", IEEE Intelligent Vehicles Symposium, Las Vegas, 2020. [ IEEE | arXiv ]
  • F. Kruber, J. Wurst, E. Sánchez Morales, S. Chakraborty and M. Botsch, Unsupervised and Supervised Learning with the Random Forest Algorithm for Traffic Scenario Clustering and Classification", 30th IEEE Intelligent Vehicles Symposium, 2019. [ IEEE | arXiv ]
  • F. Kruber, J. Wurst, S. Charkraborty and M. Botsch, "Highway traffic data - macroscopic, microscopic and criticality analysis for capturing relevant traffic scenarios and traffic modeling based on the highD data set", arxiv.org (open access platform), 2019. [ arXiv ]
  • F. Kruber, J. Wurst, and M. Botsch, „An Unsupervised Random Forest Clustering Technique for Automatic Traffic Scenario Categorization”, IEEE International Conference on Intelligent Transportation Systems, 2018. [ IEEE | arXiv ]
Technische Hochschule Ingolstadt
  • Esplanade 10
    85049 Ingolstadt
  • Phone: +49 841 9348-0
  • Mail: info@thi.de

Legal notes

  • Imprint
  • Data protection

Any Questions?

  • FAQs
  • Service Center Study Affairs
  • Counselling for prospective students
  • International Office

General information

  • General contact and directions
  • Office and opening hours
  • Marketplace
  • Website Feedback